skip to main content


Search for: All records

Creators/Authors contains: "Albert, James S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    Evolutionary transitions across abiotic gradients can occur among habitats at multiple spatial scales, and among taxa and biotas through a range of ecological and evolutionary time frames. Two diverse groups of electric fishes, Neotropical Gymnotiformes, and Afrotropical Mormyroidea, offer interesting examples of potentially convergent evolution in aspects of morphological, physiological, and life history traits. We examined biogeographical, morphological, and functional patterns across these two groups to assess the degree of convergence in association with abiotic environmental variables. While there are superficial similarities across the groups and continents, we found substantially more differences in terms of habitat occupancy, electric signal diversity, and morphological disparity. These differences likely correlate to differences in biogeographical histories across the Neotropics and Afrotropics, biotic factors associated with aquatic life and electric signals, and sampling issues plaguing both groups. Additional research and sampling are required to make further inferences about how electric fishes transition throughout diverse freshwater habitats across both microevolutionary and macroevolutionary scales.

     
    more » « less
  2. Synopsis Apteronotidae and Mormyridae are species-rich clades of weakly electric fishes from Neotropical and Afrotropical freshwaters, respectively, known for their high morphological disparity and often regarded as a classic example of convergent evolution. Here, we use CT-imaging and 3D geometric morphometrics to quantify disparity in craniofacial morphologies, and to test the hypothesis of convergent skull-shape evolution in a phylogenetic context. For this study, we examined 391 specimens representing 78 species of Apteronotidae and Mormyridae including 30 of 37 (81%) of all valid genera with the goal to sample most of the craniofacial disparity known in these clades. We found no overlap between Apteronotidae and Mormyridae in the skull-shape morphospace using PCA and a common landmark scheme, and therefore no instances of complete phenotypic convergence. Instead, we found multiple potential instances of incomplete convergence, and at least one parallel shift among electric fish clades. The greatest components of shape variance in both families are the same as observed for most vertebrate clades: heterocephaly (i.e., opposite changes in relative sizes of the snout and braincase regions of the skull), and heterorhynchy (i.e., dorsoventral changes in relative snout flexion and mouth position). Mormyrid species examined here exhibit less craniofacial disparity than do apteronotids, potentially due to constraints associated with a larger brain size, ecological constraints related to food-type availability. Patterns of craniofacial evolution in these two clades depict a complex story of phenotypic divergence and convergence in which certain superficial similarities of external morphology obscure deeper osteological and presumably developmental differences of skull form and function. Among apteronotid and mormyrid electric fishes, craniofacial convergence is only skin deep. 
    more » « less
  3. Abstract

    The Neotropics harbors a megadiverse ichthyofauna comprising over 6300 species with approximately 80% in just three taxonomic orders within the clade Characiphysi. This highly diverse group has evolved in tropical South America over tens to hundreds of millions of years influenced mostly by re‐arrangements of river drainages in lowland and upland systems. In this study, we investigate patterns of spatial diversification in Neotropical freshwater fishes in the family Curimatidae, a species‐rich clade of the order Characiformes. Specifically, we examined ancestral areas, dispersal events, and shifts in species richness using spatially explicit biogeographic and macroevolutionary models to determine whether lowlands–uplands serve as museums or cradles of diversification for curimatids. We used fossil information to estimate divergence times in BEAST, multiple time‐stratified models of geographic range evolution in BioGeoBEARS, and alternative models of geographic state‐dependent speciation and extinction in GeoHiSSE. Our results suggest that the most recent common ancestor of curimatids originated in the Late Cretaceous likely in lowland paleodrainages of northwestern South America. Dispersals from lowland to upland river basins of the Brazilian and Guiana shields occurred repeatedly across independently evolving lineages in the Cenozoic. Colonization of upland drainages was often coupled with increased rates of net diversification in species‐rich genera such asCyphocharaxandSteindachnerina. Our findings demonstrate that colonization of novel aquatic environments at higher elevations is associated with an increased rate of diversification, although this pattern is clade‐dependent and driven mostly by allopatric speciation. Curimatids reinforce an emerging perspective that Amazonian lowlands act as a museum by accumulating species along time, whereas the transitions to uplands stimulate higher net diversification rates and lineage diversification.

     
    more » « less
  4. null (Ed.)
    RESUMO Este trabalho é uma revisão das evidências geológicas sobre a origem do moderno rio Amazonas transcontinental, e a história paleogeográfica das conexões ribeirinhas entre as principais bacias sedimentares do norte da América do Sul durante o Neógeno. São revisados novos conjuntos de dados geocronológicos usando isótopos radiogênicos e estáveis, e de métodos geocronológicos tradicionais, incluindo sedimentologia, mapeamento estrutural, exploração sísmica e bioestratigrafia. O atual rio Amazonas e sua bacia continental se formaram durante o final do Mioceno e do Plioceno, através de alguns dos maiores eventos de captura de rio na história da Terra. Os sedimentos andinos são registrados pela primeira vez no leque fluvial do Amazonas por volta de 10,1-9,4 Ma, com um grande aumento na sedimentação a cerca de 4,5 Ma. O rio Amazonas transcontinental, portanto, se formou durante um período de cerca de 4,9 a 5,6 milhões de anos, por meio de vários eventos de captura de rios. Acredita-se que as origens do moderno rio Amazonas estejam ligadas às paisagens de inundação da América do Sul tropical (por exemplo, várzeas, pantanais, savanas sazonalmente inundadas). As áreas pantanosas persistiram em cerca de 10% do norte da América do Sul sob diferentes configurações por mais de 15 milhões de anos. Embora as reconstruções paleogeográficas apresentadas sejam simplistas, elas são oferecidas para inspirar a coleta e análise de novos conjuntos de dados sedimentológicos e geocronológicos. 
    more » « less
  5. Using the most comprehensive fish occurrence database, we evaluated the importance of ecological and historical drivers in diversity patterns of subdrainage basins across the Amazon system. Linear models reveal the influence of climatic conditions, habitat size and sub-basin isolation on species diversity. Unexpectedly, the species richness model also highlighted a negative upriver-downriver gradient, contrary to predictions of increasing richness at more downriver locations along fluvial gradients. This reverse gradient may be linked to the history of the Amazon drainage network, which, after isolation as western and eastern basins throughout the Miocene, only began flowing eastward 1–9 million years (Ma) ago. Our results suggest that the main center of fish diversity was located westward, with fish dispersal progressing eastward after the basins were united and the Amazon River assumed its modern course toward the Atlantic. This dispersal process seems not yet achieved, suggesting a recent formation of the current Amazon system. 
    more » « less